# 인간은 불로장생의 길을 찾아낼 수 있을까요?

- 나사는 2015년 3월부터 340일 동안 스콧은 지상 400㎞ 상공에 떠 있는 무중력 상태의 우주정거장에서 머물고, 마크는 대부분의 사람처럼 지상에 머물면서 둘의 신체 상태를 비교하는 연구를 시작합니다.
- 무중력 상태에서 오랫동안 있었으니 스콧의 키가 커지고, 골밀도와 근육량이 줄어들며, 안구와 망막에 변화가 있으리라는 것은 이미 예상했습니다
- 이 외에 스콧에게는 젖산 등 대사산물의 비율, 호중구 등 면역세포의 활성 비율, 혈소판 응집 등 여러 변화가 있었지만 그중 가장 흥미를 끈 것은 바로 텔로미어(Telomere)의 길이 차이였습니다.
- 우주에 있을 때, 스콧의 세포 노화의 바로미터라는 텔로미어 길이가 지상에 있는 마크의 것보다 약 10% 더 길다는 관찰 결과가 나왔습니다.
- 1961년 레너드 헤이플릭은 인간에게서 유래한 세포는 아무리 이상적 조건을 갖춰 배양해도 40~60회 정도 분열한 뒤에는 더 이상 분열하지 않고 저절로 죽어버리는 현상을 관찰합니다.
- 왜 세포에 헤이플릭 한계가 나타나는지 그 정확한 원인은 알지 못했습니다. 그 이유가 확실히 밝혀진 것은 1980년대로, 엘리자베스 블랙번이 유전물질인 염색체의 양 끝단에 존재하는 텔로미어의 존재와 그 역할을 규명한 뒤였습니다.
- 세포는 한 번 분열할 때마다 염색체 전체를 한 세트 더 복제해 나눠 갖습니다. 그런데 이 복제 과정에서 어쩔 수 없이 염색체의 끝부분에 있는 디엔에이(DNA)가 10여 개씩 떨어지는 일이 반복됩니다.
- 그래서 생명체는 세포가 분열할 때마다 잘려나가는 부위에 TTAGGG(태그)처럼, 별다른 의미가 없는 염기서열을 반복해 덧대어, 염색체에 포함된 중요한 유전정보가 잘려나가는 것을 막습니다.
- 이렇게 염색체 말단에 존재하는 부위를 텔로미어라고 하지요. 즉, 텔로미어는 세포분열에서 염색체가 지닌 유전정보가 손상되는 것을 막는 일종의 보호대이자, 책으로 비유하자면 속지를 보호하는 두꺼운 겉표지와 같은 부위입니다.
- 이 텔로미어의 길이가 일정 수준 이하로 줄어들면 세포는 분열을 멈추고 생명활동을 종료하는 세포자멸(Apoptosis) 프로그램을 구동합니다.
- 뒤이어 텔로미어의 길이가 짧아지지 않도록 유지하는 효소인 텔로머라아제의 존재가 알려지고, 텔로머라아제의 활성이 수명과 밀접한 관계가 있음도 알려집니다.
- 바닷가재는 텔로머라아제 활성이 높아 텔로미어의 길이가 짧아지지 않도록 유지하며 오랫동안 노화 증상을 보이지 않은 채 살아갑니다.
- 우주에 있을 때는 확연히 길었던 스콧의 텔로미어 길이는, 그가 지상에 내려오자 겨우 며칠 만에 원래대로 되돌아갔습니다. 우주에서의 변화는 일시적이었던 거죠.
- 과학자들은 스콧의 텔로미어가 일시적으로 길어진 이유는 우주로 나가서가 아니라, 그가 우주비행을 하는 동안 따랐던 규칙적인 생활과 엄격하게 관리된 식단 때문일 가능성이 크다고 지적합니다.
- 기존에도 엄격한 식이요법으로 열량 섭취를 3분의 1 정도 줄인 쥐에게서 텔로미어의 길이 감소가 덜 일어나고 수명도 20% 이상 늘어났음이 보고된 적이 있으며, 소식(小食)이 장수 비결 중 하나임이 널리 알려졌으니 말입니다.
- 발생·행동 유전학자인 캐스린 하든 박사는 미국의 경우만 봐도, 가장 부유한 계층은 가장 가난한 계층보다 평균 15년 이상 오래 살며, 저소득층 어린이는 8살만 돼도 노화 징후를 드러내는 후성유전학적 변이를 보인다며 이를 뒷받침합니다.
- 죽음은 누구에게나 찾아오는 운명이지만, 그 죽음이 찾아오는 순서는 사회계층 사다리의 아래쪽부터라는 것입니다.
# 기사 요약글입니다. 원문은 아래 링크를 확인하세요
의견을 남겨주세요