1. 다음 조건을 모두 만족하는 서로 다른 네 자연수 a, b, c, d가 있다. 이때, a * d의 최댓값을 구하시오.
a < b < c < d
a + d = b + c
a + b + c + d = 20
2. 2를 제외한 모든 소수 p에 대하여, p² - 1이 항상 8의 배수임을 증명하시오
3. 다항식 f(x) = x² + ax + b가 (x - 2)로 나누어 떨어지고, (x - 3)으로 나누면 나머지가 7일 때 f(x)를 구하시오.
4. 이차함수 y = x² + ax + b의 대칭축이 x = 3, 꼭짓점의 y좌표가 4일 때, a, b의 값을 구하시오.
5. 자연수 x, y에 대하여, 다음 조건을 만족하는 (x, y)의 순서쌍을 구하시오.
3x + 2y = 19
2x - y = 8
6. a > 0, b > 0일 때, a/b + b/a ≥ 2 임을 증명하시오.
의견을 남겨주세요